Single Nitrogen-Vacancy Centres in Diamond for Quantum Computing and Quantum Sensing 

Gavin W Morley, Department of Physics, University of Warwick, UK  

Nitrogen-vacancy centres (NVCs) in diamond have electronic and nuclear spins which can be optically initialised and read out [1]. The spin coherence times can be over one minute [2], and optical entanglement has been demonstrated between NVCs [3]. Arrays of single NVCs have been created with good coherence [4-9]. These elements make NVCs a strong platform for quantum computing, quantum communication and quantum sensing. The main techniques for making arrays of NVC are ion implantation [7-10], laser writing [4, 5] and electron-beam writing [6]; the strengths and weaknesses of these techniques will be discussed.  

It has been proposed that single NVC in micron-sized diamonds could test the quantum nature of gravity [11] by creating macroscopic spatial superpositions of a microdiamond [12, 13]. This could in turn lead to a new class of sensitive quantum sensors.  

[1] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup & L. C. L. Hollenberg, Physics Reports 528, 1 (2013). 

[2] C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker, M. Markham, D. J. Twitchen & T. H. Taminiau, Physical Review X 9, 031045 (2019). 

[3] S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard & R. Hanson, Nature 605, 663 (2022). 

[4] C. J. Stephen, B. L. Green, Y. N. D. Lekhai, L. Weng, P. Hill, S. Johnson, A. C. Frangeskou, P. L. Diggle, Y. C. Chen, M. J. Strain, E. Gu, M. E. Newton, J. M. Smith, P. S. Salter & G. W. Morley, PR Applied 12, 064005 (2019). 

[5] Y.-C. Chen, P. S. Salter, S. Knauer, L. Weng, A. C. Frangeskou, C. J. Stephen, S. N. Ishmael, P. R. Dolan, S. Johnson, B. L. Green, G. W. Morley, M. E. Newton, J. G. Rarity, M. J. Booth & J. M. Smith, Nat. Photon. 11, 77 (2017). 

[6] C. A. McLellan, B. A. Myers, S. Kraemer, K. Ohno, D. D. Awschalom & A. C. Bleszynski Jayich, Nano Lett. 16, 2450 (2016). 

[7] S. Sangtawesin, B. L. Dwyer, S. Srinivasan, J. J. Allred, L. V. H. Rodgers, K. De Greve, A. Stacey, N. Dontschuk, K. M. O’Donnell, D. Hu, D. A. Evans, C. Jaye, D. A. Fischer, M. L. Markham, D. J. Twitchen, H. Park, M. D. Lukin & N. P. de Leon, Physical Review X 9, 031052 (2019). 

[8] K. Ohno, F. J. Heremans, C. F. d. l. Casas, B. A. Myers, B. J. Alemán, A. C. B. Jayich & D. D. Awschalom, APL 105, 052406 (2014). 

[9] S. B. van Dam, M. Walsh, M. J. Degen, E. Bersin, S. L. Mouradian, A. Galiullin, M. Ruf, M. Ijspeert, T. H. Taminiau, R. Hanson & D. R. Englund, PRB 99, 161203(R) (2019). 

[10] D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel & D. D. Awschalom, Nano Lett. 10, 3168 (2010). 

[11] S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toroš, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim & G. Milburn, PRL 119, 240401 (2017). 

[12] B. D. Wood, S. Bose & G. W. Morley, PRA 105, 012824 (2022). 

[13] B. D. Wood, G. A. Stimpson, J. E. March, Y. N. D. Lekhai, C. J. Stephen, B. L. Green, A. C. Frangeskou, L. Ginés, S. Mandal, O. A. Williams & G. W. Morley, PRB 105, 205401 (2022).